
High Degree of Customization
C++test allows full customization of its test execution sequence. In addition to using 
the built-in test automation, users can incorporate custom test scripts and shell 
commands to fit the tool into their specific build and test environment. 

C++test can be utilized with a wide variety of embedded OS and architectures, by 
cross-compiling the provided runtime library for a desired target runtime environment. 
All test artifacts of C++test are source code, and therefore completely portable.

Test on the Host, Simulator, and Target
C++test automates the complete test execution flow, including test case generation, 
cross-compilation, deployment, execution, and loading results (including coverage 
metrics) back into the GUI. Testing can be driven interactively from the GUI or from 
the command line for automated test execution, as well as batch regression testing. 
In the interactive mode, users can run tests individually or in selected groups for 
easy debugging or validation. For batch execution, tests can be grouped based 
either on the user code they are liked with, or their name or location on disk. 

HOST (DEVELOPMENT) ENVIRONMENT

C++test TM

Generate/ 
Extend Tests

and Stubs

User
Code

+
Binary

Libraries

Execute
Tests

Review Results +
Coverage 

Host-Based
Flow

Target-Based
Flow

Cross Compile
Test

Executable

Execute
Tests

SIMULATOR OR TARGET DEVICE

Results saved 
in file for later 

review

Socket-based
real-time 
reporting

C++test’s customizable workflow allows users to test code as it’s developed, 
then use the same tests to validate functionality/reliability in target environments

DA
TA

 SH
EE

T

DA
TA

 SH
EE

T

Parasoft C++test enables teams to produce better code, test it more efficiently, and consistently monitor progress towards their quality goals. 
With C++test, critical time-proven best practices—such as static analysis, comprehensive code review,  runtime error detection, unit and 
component testing with integrated coverage analysis—are automated on the developer’s desktop, early in the development cycle. A command 
line interface enables fully automated execution within regression and continuous integration environments, providing data for monitoring 
and analyzing quality trends. Moreover, C++test integrates with Parasoft’s Concerto, which provides interactive Web-based dashboards with 
drill-down capability. This allows teams to track project status and trends based on C++test results and other key process metrics.

For embedded and cross-platform development, C++test can be used in both host-based and target-based code analysis and test flows.
See page 3 for details.

A properly implemented coding policy can eliminate entire classes of 
programming errors by establishing preventive coding conventions. 
C++test statically analyzes code to check compliance with such a 
policy. To configure C++test to enforce a coding standards policy 
specific to their group or organization, users can define their own rule 
sets with built-in and custom rules. Code analysis reports can be 
generated in a variety of formats, including HTML and PDF.

Hundreds of built-in rules—including implementations of MISRA, 
MISRA 2004, and the new MISRA C++ standards, as well as 
guidelines from Meyers’ Effective C++ and Effective STL books, 
and other popular sources—help identify potential bugs from 
improper C/C++ language usage, enforce best coding practices, 
and improve code maintainability and reusability. Custom rules, 
which are created with a graphical RuleWizard editor, can enforce 
standard API usage and prevent the recurrence of application-
specific defects after a single instance has been found. 

TMParasoft® C++test  - Comprehensive Code Quality Tools for C/C++ Development  

BugDetective, the advanced interprocedural static analysis module 
of C++test, simulates feasible application execution paths—which 
may cross multiple functions and files—and determines whether 
these paths could trigger specific categories of runtime bugs. 
Defects detected include using uninitialized or invalid memory, null 
pointer dereferencing, array and buffer overflows, division by zero, 
memory and resource leaks, and various flavors of dead code. 

C++test greatly simplifies defect analysis by providing a complete 
path trace for each potential defect in the developer’s IDE. 
Automatic cross-links to code help users quickly jump to any point 
in the highlighted analysis path.

Identify Runtime Bugs without Executing 
Software

Automate Code Analysis for Monitoring 
Compliance 

C++test  C++test  

C++test’s static analysis identifies critical bugs without executing the code (Eclipse version shown)

Increase team development productivity — Apply a comprehensive set of best practices 
that reduce testing time, testing effort, and the number of defects that reach QA.
Achieve more with existing development resources — Automatically vet known coding 
issues so more time can be dedicated to tasks that require human intelligence.
Build on the code base with confidence — Efficiently construct, continuously execute, 
and maintain a comprehensive regression test suite that detects whether updates 
break existing functionality.
Gain instant visibility into C and C++ code quality and readiness — Access on-demand 
objective code assessments and track progress towards quality and schedule targets.
Reduce support costs — Automate negative testing on a broad range of potential user 
paths to uncover problems that might otherwise surface only in “real-world” usage.

Benefits

C/C++ DevelopmentC/C++ Development

DATA SHEETDATA SHEET

Host Platforms
   Windows NT/2000/XP/2003/Vista/7 
   Linux kernel 2.4 or higher with glibc 2.3 or higher and an x86-
   compatible processor 
   Linux kernel 2.6 or higher with glibc 2.3 or higher and an x86_64-
   compatible processor 
   Solaris 7, 8, 9, 10 and an UltraSPARC processor 
   IBM AIX 5.3 and a PowerPC processor
IDEs
   Eclipse IDE for C/C++ Developers 3.2, 3.3, 3.4, 3.5, 3.6, 3.7
   Microsoft Visual Studio 2003, 2005, 2008, 2010 with Visual C++ 
   Wind River Workbench 2.6 or 3.0-3.3 
   ARM Workbench IDE for RVDS 3.0, 3.1, 4.0, 4.1 
   QNX Momentics IDE 4.5 (QNX Software Development Platform 6.4) 
   Texas Instruments Code Composer Studio 4LB 
IDEs with Project Import Support
   ARM ADS 1.2 
   Green Hills MULTI 4.0.x 
   IAR Embedded Workbench 5.3/5.4 
   Keil RealView MDK 3.40/uVision3 
   Microsoft eMbedded Visual C++ 4.0 
   Microsoft Visual Studio 6 
   Texas Instruments Code Composer 3.1 and 3.3 
   Wind River Tornado 2.0, 2.2 
Host Compilers
   Windows 
      Microsoft Visual C++ 6.0, .NET (7.0), .NET 2003 (7.1), 2005 (8.0),
      2008 (9.0), 2010 (10.0) 
      GNU and MingW gcc/g++ 2.95.x, 3.2.x, 3.3.x, 3.4.x 
      GNU gcc/g++ 4.0.x, 4.1.x, 4.2.x, 4.3.x, 4.4.x, 4.5.x 
      Green Hills MULTI for Windows x86 Native v4.0.x 
   Linux (x86 target platform) 
      GNU gcc/g++ 2.95.x, 3.2.x, 3.3.x, 3.4.x, 4.0.x, 4.1.x, 4.2.x, 4.3.x, 4.4.x 
   Linux (x86_64 target platform) 
      GNU gcc/g++ 3.3.x, 3.4.x, 4.0.x, 4.1.x, 4.2.x, 4.3.x, 4.4.x 
   Solaris 
      Sun C++ 5.3 (Sun Forte C++ 6 Update 2), Sun C++ 5.5 (Sun ONE Studio 8),
      Sun C++ 5.6 (Sun ONE Studio 9), Sun C++ 5.7 (Sun ONE Studio 10),
      Sun C++ 5.8 (Sun ONE Studio 11), Sun C++ 5.9 (Sun ONE Studio 12) 
      GNU gcc/g++ 2.95.x, 3.2.x, 3.3.x, 3.4.x, 4.0.x, 4.1.x, 4.2.x, 4.3.x,
      4.4.x, 4.5.x 
      Green Hills MULTI for SPARC Solaris Native v4.0.x 
   AIX 
      IBM XL C/C++ compiler 8.0 
      GNU gcc/g++ 4.1.x 

   ARM (Windows hosted) 
      ARM RVCT 2.2, 3.x, 4.x 
      ARM ADS 1.2 
   Cosmic (Windows hosted) 
      Cosmic Software 68HC08 C Cross Compiler V4.6.x (static analysis only) 
   eCosCentric (Linux hosted) 
      GCC 3.4.x (static analysis only) 
   Fujitsu (Windows hosted)
      FR Family SOFTUNE C/C++ Compiler V6
   GNU (Windows, Linux, Solaris hosted) 
      gcc 2.9 - 4.5  
   Green Hills 
      Windows hosted 
          Green Hills MULTI v5.1.x optimizing compilers for Embedded V800 
      Windows, Solaris hosted 
          Green Hills MULTI v4.0.x optimizing compilers 
   IAR (Windows hosted) 
      IAR ANSI C/C++ Compiler 5.3x, 5.4x, 5.5x for ARM 
      IAR ANSI C/C++ Compiler 6.1x for ARM (C only)  
   Keil (Windows hosted) 
      ARM/Thumb C/C++ Compiler, RVCT3.1 for uVision 
      ARM C/C++ Compiler, RVCT4.0 for uVision 
      C51 Compiler V8.18 (static analysis only) 
   Microsoft (Windows hosted) 
      Microsoft Visual C++ for Windows Mobile 8.0, 9.0 
      Microsoft Embedded Visual C++ 4.0 

  QNX (Windows hosted) 
      GCC 2.9.x, 3.3.x, 4.2.x, 4.4.x

      Windows hosted 
         TriCore VX-toolset C/C++ Compiler 2.5 (C only) 
         TriCore VX-toolset C/C++ Compiler 2.5, 3.3, 3.4, 3.5  

  QNX (Windows hosted) 
      GCC 2.9.x, 3.3.x, 4.2.x, 4.4.x
  Renesas (Windows hosted) 
      Renesas SH SERIES C/C++ Compiler V9.03 
  STMicroelectronics (Windows hosted) 
      ST20 (static analysis only) 
      ST40 (static analysis only) 
   TASKING 
      Windows and Solaris hosted 
         80C196 C Compiler v6.0 (static analysis only) 
      Windows hosted 
         TriCore VX-toolset C/C++ Compiler 2.5 (C only) 
         TriCore VX-toolset C/C++ Compiler 2.5, 3.3, 3.4, 3.5  

   Texas Instruments (Windows hosted) 
      Windows hosted - CCS 4.x: 
         TMS320C6x C/C++ Compiler v6.1.x 
         TMS320C2000 C/C++ Compiler v5.2.x 
         TMS320C55x C/C++ Compiler v4.3 
         TMS320C54x C/C++ Compiler v4.2 (static analysis only) 
         MSP430 C/C++ Compiler v3.2.x
      Windows hosted - CCS 3.x: 
         TMS320C6x C/C++ Compiler v5.1 
         TMS320C6x C/C++ Compiler v6.0 
         TMS320C2000 C/C++ Compiler v4.1 (static analysis only) 
      Solaris hosted: 
         TMS320C2x/C2xx/C5x Version 7.00 (static analysis only) 
         TMS320C6x C/C++ Compiler v. 4.3 (static analysis only) 
         TMS320C6x C Compiler v. 4.00 (static analysis only) 
         TMS320C6x C/C++ Compiler v. 5.1 (static analysis only) 
   Wind River 
      Windows, Solaris, Linux hosted 
         GCC 2.96, 3.4.x, 4.1.x  , 4.3.x
         DIAB 5.0, 5.5, 5.6, 5.7, 5.8  , 5.9
      Windows hosted 
         GCC 3.3.x for VxWorks 653 (static analysis only) 
         EGCS 2.90 

Supported Host Environments

Build Management
   GNU make 
   Sun make
   Microsoft nmake 
   JAM 
   Other build scripts that can provide an option of 
   overriding a compiler via an environment variable 
Source Control
   AccuRev SCM 
   Borland StarTeam 

CVS 
Git

   IBM/Rational ClearCase 
   Microsoft Team Foundation Server 
   Microsoft Visual SourceSafe 
   Perforce SCM 
   Serena Dimensions 
   Subversion (SVN) 
   Telelogic Synergy 

  Renesas (Windows hosted) 
      Renesas SH SERIES C/C++ Compiler V9.03 
  STMicroelectronics (Windows hosted) 

      ST20 (static analysis only) 
      ST40 (static analysis only) 
   TASKING 
      Windows and Solaris hosted 
         80C196 C Compiler v6.0 (static analysis only) 

Target/Cross Compilers
   Altera (Linux hosted) 
      Nios GCC 2.9 (static analysis only) 
      NIOS II 5.1 GCC 3.4 (static analysis only) 

11



Features

Unit and Integration Test with Coverage Analysis

Static analysis of code for compliance with user-selected coding standards 

Graphical RuleWizard editor for creating custom coding rules 

Static code path simulation for identifying potential runtime errors 

Automated code review with a graphical interface and progress tracking

Application monitoring/memory analysis 

Automated generation and execution of unit and component-level tests 

Flexible stub framework 

Full support for regression testing 

Code coverage analysis with code highlighting

Code coverage analysis for unit testing and beyond 

(including application-level tests)

Full team deployment infrastructure for desktop and command line usage

C++test’s automation greatly increases the efficiency of testing the correctness and reliability of newly-developed or legacy code. C++test 
automatically generates complete tests, including test drivers and test cases for individual functions, purely in C or C++ code in a format similar to 
CppUnit. These tests, with or without modifications, are used for initial validation of the functional behavior of the code. By using corner case 
conditions, these automatically-generated test cases also check function responses to unexpected inputs, exposing potential reliability problems. 

Test creation and management is simplified via a set of specific GUI widgets. A graphical Test Case Wizard enables developers to rapidly create 
black-box functional tests for selected functions without having to worry about their inner workings or embedded data dependencies. A Data 
Source Wizard helps parameterize test cases and stubs—enabling increased test scope and coverage with minimal effort.  Stub analysis and 
generation is facilitated by the Stub View, which presents all functions used in the code and allows users to create stubs for any functions not 
available in the test scope—or to alter existing functions for specific test purposes. Test execution and analysis are centralized in the Test Case 
Explorer, which consolidates all existing project tests and provides a clear pass/fail status. These capabilities are especially helpful for supporting 
automated continuous integration and testing as well as “test as you go” development.

Code review is known to be the most effective approach to uncover 
code defects. Unfortunately, many organizations underutilize code 
review because of the extensive effort it is thought to require. The 
C++test Code Review module automates preparation, notification, and 
tracking of peer code reviews, enabling a very efficient team-oriented 
process. Status of all code reviews, including all comments by 
reviewers, is maintained and automatically distributed by the C++test 
infrastructure. C++test supports two typical code review flows:

Post-commit code review. This mode is based on automatic 
identification of code changes in a source repository via 
custom source control interfaces, and creating code review 
tasks based on pre-set mapping of changed code to 
reviewers.

Pre-commit code review. Users can initiate a code review from 
the desktop by selecting a set of files to distribute for the 
review, or automatically identify all locally changed source 
code. 

The effectiveness of team code reviews is further enhanced through 
C++test’s static analysis capability. The need for line-by-line inspections is 
virtually eliminated because the team’s coding policy is monitored 
automatically. By the time code is submitted for review, violations have 
already been identified and cleaned. Reviews can then focus on examining 
algorithms, reviewing design, and searching for subtle errors that 
automatic tools cannot detect. Configurable Detailed Reporting

C++test’s HTML, PDF, and custom format reports can be configured via GUI 
controls or an options file. The standard reports include a pass/fail 
summary of code analysis and test results, a list of analyzed files, and a 
code coverage summary. The reports can be customized to include a 
listing of active static analysis checks, expanded test output with pass/fail 
status of individual tests, parameters of trend graphs for key metrics, and 
full code listings with color-coding of all code coverage results. Generated 
reports can be automatically sent via email, based on a variety of role-
based filters. In addition to providing data directly to the developers 
responsible for the code flagged for defects, C++test sends summary 
reports to managers and team leads. 

Streamline Code Review

Dashboards track key development metrics

Advanced Unit Test Features
Automatic generation of tests and stubs

Automatic generation of assertions based on observed test results

Graphical Test Case Wizard for interactive definition of tests

Complete visibility into test and stub source code

Intelligent, test-case-sensitive stubs

Parameterization of tests and stubs

Multi-metric coverage analysis for DO-178B (including MC/DC)

Flexible support for continuous regression testing

Annotation of tests against bug and requirement IDs

Execution of tests under debugger

Special mode for testing template code

Automated Regression Testing
C++test facilitates the development of a robust regression test suite that 
detects if incremental code changes break existing functionality. Whether 
teams have a large legacy code base, a small piece of just-completed code, or 
something in between, C++test can generate tests that capture the existing 
software behavior via test assertions produced by automatically recording the 
runtime test results. As the code base evolves, C++test reruns these tests and 
compares the current results with those from the originally captured "golden 
set." It can easily be configured to use different execution settings, test 
cases, and stubs to support testing in different contexts (e.g., different 
continuous integration phases, testing incomplete systems, or testing 
specific parts of complete systems). This type of regression testing is 
especially critical for supporting agile development and short release cycles, 
and ensures the continued functionality of constantly evolving and difficult-
to-test applications.

Efficient Team Deployment
C++test establishes an efficient process that ensures software verification 
tasks are ingrained into the team's existing workflow and 
automated—enabling the team to focus on tasks that truly require human 

Embedded and Cross-Platform Development
As the software components in embedded systems are becoming increasingly critical, the attention to quality in embedded software increases across the 
board. Long-standing quality strategies such as testing with a debugger are no longer efficient or sufficient. To further complicate matters, many 
developers cannot readily run a test program in the actual deployment environment because they lack access to the final system hardware. To address 
these challenges, code quality needs to be realized throughout the development lifecycle—using a synergy of time-proven techniques for early defect 
prevention, assisted by automation for implementation and monitoring.

For highly quality-sensitive industries, such as avionics, medical, automobile, transportation, and industrial automation, the addition of Parasoft’s Web-
based audit and reporting system, with interactive Web-based dashboards and drill-down capability powered by a SQL database, enables an efficient and 
auditable quality process with complete visibility into compliance efforts. 

Runtime Error Detection is the best known approach to eliminating serious 
memory-related bugs with zero false positives. The running application is 
constantly monitored for certain classes of problems—like memory leaks, 
null pointers, uninitialized memory, and buffer overflows—and results are 
visible immediately after the testing session is finished.

Without requiring advanced and time-consuming testing activities, the 
prepared application goes through the standard functional testing and all 
existing problems are flagged. The application can be executed on the 
target device, simulated target, or host machine.  The collected problems 
are presented directly in the developer's IDE with the details required to 
understand and fix the problem (including memory block size, array 
index, allocation/deallocation stack trace etc.)

Monitor the Application for Memory Problems

intelligence. Defect review and correction are facilitated through automated task assignment and distribution. Each defect detected is prioritized, 
assigned to the developer who wrote the related code, and distributed to his or her IDE with full data and cross-links to code. To help managers assess 
and document trends, centralized reporting ensures real-time visibility into quality status and processes. This data also helps determine if additional 
actions are needed to satisfy internal goals or demonstrate regulatory compliance.

A multi-metric test coverage analyzer, including statement, branch, 
path, and MC/DC coverage, helps users gauge the efficacy and 
completeness of the tests, as well as demonstrate compliance with test 
and validation requirements, such as DO-178B.  Test coverage is 
presented via code highlighting for all supported coverage metrics—in 
the GUI or color-coded code listing reports. Summary coverage reports 
including file, class, and function data can be produced in a variety of 
formats.  

Runtime Error Detection

Identify complex memory-related problems 

through simple functional testing—for example:

memory leaks

null pointers

uninitialized memory

buffers overflows 

Collect code coverage from application runs

Increase test result accuracy through execution of 

the monitored application in a real target environment  

Coverage metrics are collected during application execution. These can be used to see what part of the application was tested and to fine tune the set of 
regression unit tests (complementary to functional testing).



Features

Unit and Integration Test with Coverage Analysis

Static analysis of code for compliance with user-selected coding standards 

Graphical RuleWizard editor for creating custom coding rules 

Static code path simulation for identifying potential runtime errors 

Automated code review with a graphical interface and progress tracking

Application monitoring/memory analysis 

Automated generation and execution of unit and component-level tests 

Flexible stub framework 

Full support for regression testing 

Code coverage analysis with code highlighting

Code coverage analysis for unit testing and beyond 

(including application-level tests)

Full team deployment infrastructure for desktop and command line usage

C++test’s automation greatly increases the efficiency of testing the correctness and reliability of newly-developed or legacy code. C++test 
automatically generates complete tests, including test drivers and test cases for individual functions, purely in C or C++ code in a format similar to 
CppUnit. These tests, with or without modifications, are used for initial validation of the functional behavior of the code. By using corner case 
conditions, these automatically-generated test cases also check function responses to unexpected inputs, exposing potential reliability problems. 

Test creation and management is simplified via a set of specific GUI widgets. A graphical Test Case Wizard enables developers to rapidly create 
black-box functional tests for selected functions without having to worry about their inner workings or embedded data dependencies. A Data 
Source Wizard helps parameterize test cases and stubs—enabling increased test scope and coverage with minimal effort.  Stub analysis and 
generation is facilitated by the Stub View, which presents all functions used in the code and allows users to create stubs for any functions not 
available in the test scope—or to alter existing functions for specific test purposes. Test execution and analysis are centralized in the Test Case 
Explorer, which consolidates all existing project tests and provides a clear pass/fail status. These capabilities are especially helpful for supporting 
automated continuous integration and testing as well as “test as you go” development.

Code review is known to be the most effective approach to uncover 
code defects. Unfortunately, many organizations underutilize code 
review because of the extensive effort it is thought to require. The 
C++test Code Review module automates preparation, notification, and 
tracking of peer code reviews, enabling a very efficient team-oriented 
process. Status of all code reviews, including all comments by 
reviewers, is maintained and automatically distributed by the C++test 
infrastructure. C++test supports two typical code review flows:

Post-commit code review. This mode is based on automatic 
identification of code changes in a source repository via 
custom source control interfaces, and creating code review 
tasks based on pre-set mapping of changed code to 
reviewers.

Pre-commit code review. Users can initiate a code review from 
the desktop by selecting a set of files to distribute for the 
review, or automatically identify all locally changed source 
code. 

The effectiveness of team code reviews is further enhanced through 
C++test’s static analysis capability. The need for line-by-line inspections is 
virtually eliminated because the team’s coding policy is monitored 
automatically. By the time code is submitted for review, violations have 
already been identified and cleaned. Reviews can then focus on examining 
algorithms, reviewing design, and searching for subtle errors that 
automatic tools cannot detect. Configurable Detailed Reporting

C++test’s HTML, PDF, and custom format reports can be configured via GUI 
controls or an options file. The standard reports include a pass/fail 
summary of code analysis and test results, a list of analyzed files, and a 
code coverage summary. The reports can be customized to include a 
listing of active static analysis checks, expanded test output with pass/fail 
status of individual tests, parameters of trend graphs for key metrics, and 
full code listings with color-coding of all code coverage results. Generated 
reports can be automatically sent via email, based on a variety of role-
based filters. In addition to providing data directly to the developers 
responsible for the code flagged for defects, C++test sends summary 
reports to managers and team leads. 

Streamline Code Review

Dashboards track key development metrics

Advanced Unit Test Features
Automatic generation of tests and stubs

Automatic generation of assertions based on observed test results

Graphical Test Case Wizard for interactive definition of tests

Complete visibility into test and stub source code

Intelligent, test-case-sensitive stubs

Parameterization of tests and stubs

Multi-metric coverage analysis for DO-178B (including MC/DC)

Flexible support for continuous regression testing

Annotation of tests against bug and requirement IDs

Execution of tests under debugger

Special mode for testing template code

Automated Regression Testing
C++test facilitates the development of a robust regression test suite that 
detects if incremental code changes break existing functionality. Whether 
teams have a large legacy code base, a small piece of just-completed code, or 
something in between, C++test can generate tests that capture the existing 
software behavior via test assertions produced by automatically recording the 
runtime test results. As the code base evolves, C++test reruns these tests and 
compares the current results with those from the originally captured "golden 
set." It can easily be configured to use different execution settings, test 
cases, and stubs to support testing in different contexts (e.g., different 
continuous integration phases, testing incomplete systems, or testing 
specific parts of complete systems). This type of regression testing is 
especially critical for supporting agile development and short release cycles, 
and ensures the continued functionality of constantly evolving and difficult-
to-test applications.

Efficient Team Deployment
C++test establishes an efficient process that ensures software verification 
tasks are ingrained into the team's existing workflow and 
automated—enabling the team to focus on tasks that truly require human 

Embedded and Cross-Platform Development
As the software components in embedded systems are becoming increasingly critical, the attention to quality in embedded software increases across the 
board. Long-standing quality strategies such as testing with a debugger are no longer efficient or sufficient. To further complicate matters, many 
developers cannot readily run a test program in the actual deployment environment because they lack access to the final system hardware. To address 
these challenges, code quality needs to be realized throughout the development lifecycle—using a synergy of time-proven techniques for early defect 
prevention, assisted by automation for implementation and monitoring.

For highly quality-sensitive industries, such as avionics, medical, automobile, transportation, and industrial automation, the addition of Parasoft’s Web-
based audit and reporting system, with interactive Web-based dashboards and drill-down capability powered by a SQL database, enables an efficient and 
auditable quality process with complete visibility into compliance efforts. 

Runtime Error Detection is the best known approach to eliminating serious 
memory-related bugs with zero false positives. The running application is 
constantly monitored for certain classes of problems—like memory leaks, 
null pointers, uninitialized memory, and buffer overflows—and results are 
visible immediately after the testing session is finished.

Without requiring advanced and time-consuming testing activities, the 
prepared application goes through the standard functional testing and all 
existing problems are flagged. The application can be executed on the 
target device, simulated target, or host machine.  The collected problems 
are presented directly in the developer's IDE with the details required to 
understand and fix the problem (including memory block size, array 
index, allocation/deallocation stack trace etc.)

Monitor the Application for Memory Problems

intelligence. Defect review and correction are facilitated through automated task assignment and distribution. Each defect detected is prioritized, 
assigned to the developer who wrote the related code, and distributed to his or her IDE with full data and cross-links to code. To help managers assess 
and document trends, centralized reporting ensures real-time visibility into quality status and processes. This data also helps determine if additional 
actions are needed to satisfy internal goals or demonstrate regulatory compliance.

A multi-metric test coverage analyzer, including statement, branch, 
path, and MC/DC coverage, helps users gauge the efficacy and 
completeness of the tests, as well as demonstrate compliance with test 
and validation requirements, such as DO-178B.  Test coverage is 
presented via code highlighting for all supported coverage metrics—in 
the GUI or color-coded code listing reports. Summary coverage reports 
including file, class, and function data can be produced in a variety of 
formats.  

Runtime Error Detection

Identify complex memory-related problems 

through simple functional testing—for example:

memory leaks

null pointers

uninitialized memory

buffers overflows 

Collect code coverage from application runs

Increase test result accuracy through execution of 

the monitored application in a real target environment  

Coverage metrics are collected during application execution. These can be used to see what part of the application was tested and to fine tune the set of 
regression unit tests (complementary to functional testing).



High Degree of Customization
C++test allows full customization of its test execution sequence. In addition to using 
the built-in test automation, users can incorporate custom test scripts and shell 
commands to fit the tool into their specific build and test environment. 

C++test can be utilized with a wide variety of embedded OS and architectures, by 
cross-compiling the provided runtime library for a desired target runtime environment. 
All test artifacts of C++test are source code, and therefore completely portable.

Test on the Host, Simulator, and Target
C++test automates the complete test execution flow, including test case generation, 
cross-compilation, deployment, execution, and loading results (including coverage 
metrics) back into the GUI. Testing can be driven interactively from the GUI or from 
the command line for automated test execution, as well as batch regression testing. 
In the interactive mode, users can run tests individually or in selected groups for 
easy debugging or validation. For batch execution, tests can be grouped based 
either on the user code they are liked with, or their name or location on disk. 

HOST (DEVELOPMENT) ENVIRONMENT

C++test TM

Generate/ 
Extend Tests

and Stubs

User
Code

+
Binary

Libraries

Execute
Tests

Review Results +
Coverage 

Host-Based
Flow

Target-Based
Flow

Cross Compile
Test

Executable

Execute
Tests

SIMULATOR OR TARGET DEVICE

Results saved 
in file for later 

review

Socket-based
real-time 
reporting

C++test’s customizable workflow allows users to test code as it’s developed, 
then use the same tests to validate functionality/reliability in target environments

DA
TA

 SH
EE

T

DA
TA

 SH
EE

T

Parasoft C++test enables teams to produce better code, test it more efficiently, and consistently monitor progress towards their quality goals. 
With C++test, critical time-proven best practices—such as static analysis, comprehensive code review,  runtime error detection, unit and 
component testing with integrated coverage analysis—are automated on the developer’s desktop, early in the development cycle. A command 
line interface enables fully automated execution within regression and continuous integration environments, providing data for monitoring 
and analyzing quality trends. Moreover, C++test integrates with Parasoft’s Concerto, which provides interactive Web-based dashboards with 
drill-down capability. This allows teams to track project status and trends based on C++test results and other key process metrics.

For embedded and cross-platform development, C++test can be used in both host-based and target-based code analysis and test flows.
See page 3 for details.

A properly implemented coding policy can eliminate entire classes of 
programming errors by establishing preventive coding conventions. 
C++test statically analyzes code to check compliance with such a 
policy. To configure C++test to enforce a coding standards policy 
specific to their group or organization, users can define their own rule 
sets with built-in and custom rules. Code analysis reports can be 
generated in a variety of formats, including HTML and PDF.

Hundreds of built-in rules—including implementations of MISRA, 
MISRA 2004, and the new MISRA C++ standards, as well as 
guidelines from Meyers’ Effective C++ and Effective STL books, 
and other popular sources—help identify potential bugs from 
improper C/C++ language usage, enforce best coding practices, 
and improve code maintainability and reusability. Custom rules, 
which are created with a graphical RuleWizard editor, can enforce 
standard API usage and prevent the recurrence of application-
specific defects after a single instance has been found. 

TMParasoft® C++test  - Comprehensive Code Quality Tools for C/C++ Development  

BugDetective, the advanced interprocedural static analysis module 
of C++test, simulates feasible application execution paths—which 
may cross multiple functions and files—and determines whether 
these paths could trigger specific categories of runtime bugs. 
Defects detected include using uninitialized or invalid memory, null 
pointer dereferencing, array and buffer overflows, division by zero, 
memory and resource leaks, and various flavors of dead code. 

C++test greatly simplifies defect analysis by providing a complete 
path trace for each potential defect in the developer’s IDE. 
Automatic cross-links to code help users quickly jump to any point 
in the highlighted analysis path.

Identify Runtime Bugs without Executing 
Software

Automate Code Analysis for Monitoring 
Compliance 

C++test  C++test  

C++test’s static analysis identifies critical bugs without executing the code (Eclipse version shown)

Increase team development productivity — Apply a comprehensive set of best practices 
that reduce testing time, testing effort, and the number of defects that reach QA.
Achieve more with existing development resources — Automatically vet known coding 
issues so more time can be dedicated to tasks that require human intelligence.
Build on the code base with confidence — Efficiently construct, continuously execute, 
and maintain a comprehensive regression test suite that detects whether updates 
break existing functionality.
Gain instant visibility into C and C++ code quality and readiness — Access on-demand 
objective code assessments and track progress towards quality and schedule targets.
Reduce support costs — Automate negative testing on a broad range of potential user 
paths to uncover problems that might otherwise surface only in “real-world” usage.

Benefits

C/C++ DevelopmentC/C++ Development

DATA SHEETDATA SHEET

Host Platforms
   Windows NT/2000/XP/2003/Vista/7
   Linux kernel 2.4 or higher with glibc 2.3 or higher and an x86-
   compatible processor
   Linux kernel 2.6 or higher with glibc 2.3 or higher and an x86_64-
   compatible processor
   Solaris 7, 8, 9, 10 and an UltraSPARC processor
   IBM AIX 5.3 and a PowerPC processor
IDEs
   Eclipse IDE for C/C++ Developers 3.2, 3.3, 3.4, 3.5, 3.6, 3.7
   Microsoft Visual Studio 2003, 2005, 2008, 2010 with Visual C++
   Wind River Workbench 2.6 or 3.0-3.3
   ARM Workbench IDE for RVDS 3.0, 3.1, 4.0, 4.1
   QNX Momentics IDE 4.5 (QNX Software Development Platform 6.4)
   Texas Instruments Code Composer Studio v4, v5
IDEs with Project Import Support
   ARM ADS 1.2
   Green Hills MULTI 4.0.x
   IAR Embedded Workbench 5.3/5.4
   Keil RealView MDK 3.40/uVision3
   Microsoft eMbedded Visual C++ 4.0
   Microsoft Visual Studio 6 
   Texas Instruments Code Composer 3.1 and 3.3
   Wind River Tornado 2.0, 2.2
Host Compilers
   Windows
      Microsoft Visual C++ 6.0, .NET (7.0), .NET 2003 (7.1), 2005 (8.0),
      2008 (9.0), 2010 (10.0)
      GNU and MingW gcc/g++ 2.95.x, 3.2.x, 3.3.x, 3.4.x
      GNU gcc/g++ 4.0.x, 4.1.x, 4.2.x, 4.3.x, 4.4.x, 4.5.x
      Green Hills MULTI for Windows x86 Native v4.0.x
   Linux (x86 target platform)
      GNU gcc/g++ 2.95.x, 3.2.x, 3.3.x, 3.4.x, 4.0.x, 4.1.x, 4.2.x, 4.3.x, 4.4.x
   Linux (x86_64 target platform)
      GNU gcc/g++ 3.3.x, 3.4.x, 4.0.x, 4.1.x, 4.2.x, 4.3.x, 4.4.x
   Solaris
      Sun C++ 5.3 (Sun Forte C++ 6 Update 2), Sun C++ 5.5 (Sun ONE Studio 8),
      Sun C++ 5.6 (Sun ONE Studio 9), Sun C++ 5.7 (Sun ONE Studio 10),
      Sun C++ 5.8 (Sun ONE Studio 11), Sun C++ 5.9 (Sun ONE Studio 12)
      GNU gcc/g++ 2.95.x, 3.2.x, 3.3.x, 3.4.x, 4.0.x, 4.1.x, 4.2.x, 4.3.x,
      4.4.x, 4.5.x 
      Green Hills MULTI for SPARC Solaris Native v4.0.x 
   AIX 
      IBM XL C/C++ compiler 8.0 
      GNU gcc/g++ 4.1.x 

   ARM (Windows hosted) 
      ARM RVCT 2.2, 3.x, 4.x 
      ARM ADS 1.2 
   Cosmic (Windows hosted) 
      Cosmic Software 68HC08 C Cross Compiler V4.6.x (static analysis only) 
   eCosCentric (Linux hosted) 
      GCC 3.4.x (static analysis only) 
   Fujitsu (Windows hosted)
      FR Family SOFTUNE C/C++ Compiler V6
   GNU (Windows, Linux, Solaris hosted) 
      gcc 2.9 - 4.5  
   Green Hills 
      Windows hosted 
          Green Hills MULTI v5.1.x optimizing compilers for Embedded V800 
      Windows, Solaris hosted 
          Green Hills MULTI v4.0.x optimizing compilers 
   IAR (Windows hosted) 
      IAR ANSI C/C++ Compiler 5.3x, 5.4x, 5.5x for ARM 
      IAR ANSI C/C++ Compiler 6.1x for ARM (C only)  
   Keil (Windows hosted) 
      ARM/Thumb C/C++ Compiler, RVCT3.1 for uVision 
      ARM C/C++ Compiler, RVCT4.0 for uVision 
      C51 Compiler V8.18 (static analysis only) 
   Microsoft (Windows hosted) 
      Microsoft Visual C++ for Windows Mobile 8.0, 9.0 
      Microsoft Embedded Visual C++ 4.0 

  QNX (Windows hosted) 
      GCC 2.9.x, 3.3.x, 4.2.x, 4.4.x

      Windows hosted 
         TriCore VX-toolset C/C++ Compiler 2.5 (C only) 
         TriCore VX-toolset C/C++ Compiler 2.5, 3.3, 3.4, 3.5  

  QNX (Windows hosted) 
      GCC 2.9.x, 3.3.x, 4.2.x, 4.4.x
  Renesas (Windows hosted) 
      Renesas SH SERIES C/C++ Compiler V9.03 
  STMicroelectronics (Windows hosted) 
      ST20 (static analysis only) 
      ST40 (static analysis only) 
   TASKING 
      Windows and Solaris hosted 
         80C196 C Compiler v6.0 (static analysis only) 
      Windows hosted 
         TriCore VX-toolset C/C++ Compiler 2.5 (C only) 
         TriCore VX-toolset C/C++ Compiler 2.5, 3.3, 3.4, 3.5  

   Texas Instruments (Windows hosted) 
      Windows hosted - CCS 4.x: 
         TMS320C6x C/C++ Compiler v6.1.x 
         TMS320C2000 C/C++ Compiler v5.2.x 
         TMS320C55x C/C++ Compiler v4.3 
         TMS320C54x C/C++ Compiler v4.2 (static analysis only) 
         MSP430 C/C++ Compiler v3.2.x
      Windows hosted - CCS 3.x: 
         TMS320C6x C/C++ Compiler v5.1 
         TMS320C6x C/C++ Compiler v6.0 
         TMS320C2000 C/C++ Compiler v4.1 (static analysis only) 
      Solaris hosted: 
         TMS320C2x/C2xx/C5x Version 7.00 (static analysis only) 
         TMS320C6x C/C++ Compiler v. 4.3 (static analysis only) 
         TMS320C6x C Compiler v. 4.00 (static analysis only) 
         TMS320C6x C/C++ Compiler v. 5.1 (static analysis only) 
   Wind River 
      Windows, Solaris, Linux hosted 
         GCC 2.96, 3.4.x, 4.1.x  , 4.3.x
         DIAB 5.0, 5.5, 5.6, 5.7, 5.8  , 5.9
      Windows hosted 
         GCC 3.3.x for VxWorks 653 (static analysis only) 
         EGCS 2.90 

Supported Host Environments

Build Management
   GNU make 
   Sun make
   Microsoft nmake 
   JAM 
   Other build scripts that can provide an option of 
   overriding a compiler via an environment variable 
Source Control
   AccuRev SCM 
   Borland StarTeam 

CVS 
Git

   IBM/Rational ClearCase 
   Microsoft Team Foundation Server 
   Microsoft Visual SourceSafe 
   Perforce SCM 
   Serena Dimensions 
   Subversion (SVN) 
   Telelogic Synergy 

  Renesas (Windows hosted) 
      Renesas SH SERIES C/C++ Compiler V9.03 
  STMicroelectronics (Windows hosted) 

      ST20 (static analysis only) 
      ST40 (static analysis only) 
   TASKING 
      Windows and Solaris hosted 
         80C196 C Compiler v6.0 (static analysis only) 

Target/Cross Compilers
   Altera (Linux hosted) 
      Nios GCC 2.9 (static analysis only) 
      NIOS II 5.1 GCC 3.4 (static analysis only) 

11


